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Structure Factor Algebra in the Probabilistic Procedure for Phase Determination. IT

By C. Giacovazzo
Istituto di Mineralogia, Universita di Bari, Italy
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Some distribution functions deduced in the previous paper [Giacovazzo, C. (1974). Acta Cryst. A30,
626-630] are further developed. A new form of the Cochran relation {(Ey)= EyEn_«/NY? is suggested,
which is valid in all space groups. A new generalized tangent formula is pointed out which takes the
statistical weights of the reflexions into account, as well as their contingent centrosymmetric nature.

Experimental tests gave satisfactory results.

Theoretical considerations

If E, is a non-centrosymmetric reflexion, (1.23), (1.24),
(1.25), (1.26) suggest [the prefix I denotes equations of
part I of this series (Giacovazzo, 1974)] that the
distribution (1.9) is always valid, provided a suitable
weight W, is applied to the quantity (2/)N)
|EnExEy—x]. This weight has been specified by (1.28)
for some numerical examples in the space group
P222. A generalization of this formula is now necessary
to deal with all space groups.
Because
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The considerations given in the Appendix allow us to
state that, if E, is a non-centrosymmetric reflexion,
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If E, is centrosymmetric, we obtain
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u=1Iif both E, and E, _, are centrosymmetric, u=2 if
E, and (or) E,_y are non-centrosymmetric.

Equation (3) can be usefully compared with the
formula (I.14) valid for centrosymmetric crystals. In
the case in which all the reflexions are general, (3) is
equivalent to the well-known relation (Cochran, 1955)

<Eh>= ]/1]\7 EkEh—k . (6)

The same general role is played by (4) and (5) with
respect to the well-known

1
{|Ey| cos gny= V—N |ExEn il €08 (o +¢n-1), (7)

{|Ep sin ¢y ) = |ExEn -yl sin (@i +¢n-x) . (8)

V N
Equations (3), (4) and (5), however, are more general
than (6), (7) and (8). In this connexion we emphasize
two aspects of the question:

(a) The algebraic form of the relation (6) is not
invariant when non-primitive cells are chosen. Let h,
k, h—k be three indices in a primitive cell of order m
(N is the total number of atoms) and H, K, H—K the
corresponding indices in a z-centred cell (N,=tN is
the total number of atoms). Even though Ey, Ex,
Ey_x are general reflexions, formula (6) is inadequate
to symbolize the statistical relation between Ey and
ExFEy_x: in fact we should write

CEyqy=(N.[t)"?ExEy_x .
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On the contrary, the algebraic form of (6) does not
change when a centred cell is chosen: in fact, because

Pu="1pp, CH)=17¢{(h) and m.=tm,
we have the result

CH)EEEH-K)) <5(h)f(k)§(h—k_)> .
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(b) The occurrence of a strong triplet |E, EyEy _i| is
not always a sufficient condition for deriving ¢, from
knowledge of ¢ +¢n_x. For example, in the space
group P2,2,2, the knowledge of the phases ¢, and
¢n-x, Where k=(0,g,u4) and h—k=(g,g,0), gives no
contribution to the knowledge of ¢, = @4, (see Table 1).
In particular, ¢, ~ (g + ¢n ) cannot be the case as in
(6): the crystallographic symmetry restrains the values
of the phases to

ProPn-x=0; op=%m/2.

Equations (3), (4) and (5) resolve the question because

EmEEEM—K))=0.

Following Cochran’s (1955) arguments, we can con-
clude that, if ¢, is a non-centrosymmetric reflexion, the
conditional distribution of ¢, can be still written in the
form

P(pn)=¢xp {Gh,k Ccos (¢h_¢k—(oh—k)}/2n10((;h.k)a ©
where
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The weight W,  introduced in equation (I.28) is so
defined in all space groups.

If r ‘addition pairs’ ¢, + ¢ are fixed, following

Karle & Karle (1966), we may multiply the individual
probability (9) and obtain

2r Gh,x SIN (Ph— Pk — @n ) =0.

From this relation we can derive the generalized
tangent formula

(10)
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In the same way we generalize the equations (3.35)
and (3.36) of Karle & Karle (1966) as

tan ¢p=

Table 1.
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FOR PHASE DETERMINATION. II
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where I, and I, are modified Bessel functions.

If E,, is a centrosymmetric reflexion (77, =0) in a non-
centrosymmetric space group, relation (14) can be
used. The probability P, (E;) is then

&(—=h)éEk)E(h—k)) 1
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If both Ey, and E,_x are centrosymmetric, u=1:
formula (14) coincides then with equation (I.17). It
can be useful to emphasize that (14) evaluates correctly
the probability P, (E}) in the cases, recalled above, in
which (&(—h)ék)E(h—k))Y =0. Equation (14), besides,
is suitable to deal, in non-centrosymmetric structures,
with reflexions having restricted values of the phases.
A good criterion to assign phase values to the zonal
reflexions whose phases are fixed by space-group
symmetry is to evaluate the argument of tanh in (14)
and to specify that this quantity is larger than a
threshold value.

Experimental

The tangent formula (1.10) and its modified form (11)
have been applied to the 102 largest normalized struc-
ture factors of the tincalconite (Giacovazzo, Men-
chetti & Scordari (1973)). 20 iterative cycles have been
performed with both (I.10) and (11): 80 jointly
assigned phase values resulted. Table 2 compares the
true values ¢ of these phases with the values ¢, ob-
tained by (I.10) and the phases ¢, obtained by (11).

As one can see, formula (11) seems more accurate
than (1.10): the average values {J¢ — pw!|) and {lp—¢,|)
are respectively 20 and 35°.

Some centrosymmetric reflexions have been in-
spected in order to test equation (12). Table 3 shows,
when h=(0,0,12), the pairs E.E,_, arranged in
decreasing order of A=(2/}/N) |E,ExEn_xl- We have
considered three intervals of 4 and, for each interval,
we have written the value {cos (¢x+¢n_1)) in the last

Values for space group P2,2,2,

Ogu g0u gOu ggu ggu ggu Ogu Ogu
geu Ogu Ogu ggu Ogu Ogu Ogu Ogu
geg ggg g0 00 g00 gO0g Ogg O00g
2 0 0 4 8 4 4 8
0 0 0 4 0 0 0 0
0 4 0 0 0 0 0 0
-2 0 0 0 0 0 0 0
4 -4 0 0 8 4 4 8
4 4 0 8 8 4 4 8
2 2 0 V2 V2 1 1 V2
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Table 2. Values of phases derived by different methods
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Table 2 (cont.)
20 62 11 42 9
172 142 173 30 1
1 181 159 —153 22 26
194 144 154 50 40
1 168 176 145 8 23
1 103 —19 102 20
221 172 —165 49 26
230 -—-110 -135 20 5
1 83 129 58 46 25
56 89 80 33 24

82 57 9 25 14
63 14 39 24
0 0 0 0 0

——
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1 -17 =77 =52 60 35
55 100 75 45 20

35 -5 19 40 16

228 -—113 —136 19 4

-89 —120 -—67 31 22

—47 8§ -35 55 12
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181 —143 —164 36 15

-32 27 -12 59 20

57 105 122 48 65

252 —137 -—144 30 36

4 22 —12 18 16

-31 -—-88 —64 57 33

1 0 0 0 0 0
3 =30 -32 33 35

101 180 180 180 0 0
76 15 109 51 33

1 —-64 —24 —47 40 17
-76 -—-21 =31 55 45

1 —-41 -8 =75 45 34

column of Table 3. In each of these intervals (G) is
closer than {4) to the theoretical value which corre-
sponds, in (12), to the observed value of

{cos (px+ ¢n-_1))-

Conclusions

In the part I of this paper we have take into account,
for centrosymmetric structures, the statistical weights
of the reflexions. Formulae (1.14) and (I.17) have been
deduced, which improve on the previous Cochran—
Woolfson results. In non-centrosymmetric structures,
the centrosymmetric nature of the reflexions as well as

Table 3. Pairs EkEh_kfor E0,0’12= + 1'05

h kI E @ o ow  lo—ollo—owl
4 6 1 2:99 68 90 90 22 22
6 3 9 264 179 164 176 15 3
09 3 2:62 180 180 180 0 0
6 411 250 30 112 83 82 53
5 011 245 0 0 0 0 0
7 0 1 244 0 0 0 0 0
9 0 6 233 0 0 0 0 0
9 1 5 210 207 —139 —150 14 3
330 1197 —22 —-91 —42 69 20
3 3 3 1-94 199 —132 —159 29 2
1 4 9 1-92 88 107 58 19 30
5 311 191 —83 —121 -79 38 4
6 6 3 1-89 181 131 172 50 9
4 2 2 1-87 —45 —4 =26 41 19
7 31 1-83 240 —122 —103 2 17
4 7 9 1-83 78 -3 29 81 49
2 611 1-82 23 78 38 55 15
315 1-82 229 —132 —131 1 0
06 6 1-80 0 0 0 0 0
9 4 2 1-78 -37 -5 1 32 38
0 4 8 1-77 0 0 0 0 0
210 1 1-75 123 141 100 18 23
0 3 9 1-72 180 180 180 0 0
0 210 1-68 0 0 0 0 0
9 3 3 1-68 197 —141 —139 22 24
375 1:68 204 —134 —158 22 2
2 8 9 1-68 269 170 -71 99 20
10 0 1 1-67 0 180 180 180 180
4 0 4 1-65 0 0 0 0 0
3 51 161 —49 —115 —-70 66 21
8 2 3 1-61 249 —177 —115 66 4
8 2 9 1-59 22 100 48 78 26
1 3 7 1-59 241 —119 -—115 0 4
37 2 1-58 250 —109 —72 1 38
8 0 5 1-56 180 180 180 0 0
280 1-54 52 84 86 32 34
1 91 1,51 —55 —117 -78 62 23
1 8 5 1-49 93 105 114 12 21
4 1 3 1-48 68 114 87 46 19
51 4 1-46 141 —125 —171 94 48
4 70 144 —49 —-12 —-67 37 28
5 113 1-44 224 —126 —154 10 18
7 55 1-44 157 —134 178 69 21
012 3 1-43 180 180 180 0 0
6 8 1 1-43 214 166 —167 48 21
0 711 1-38 0 0 0 0 0
7 1 3 1-38 119 —171 159 70 40
55 3 1-37 265 —123 —85 28 10
Kk h—k A
6 411 4 6 1 7-84
4 0 4 0 4 8 3.07
315 1 37 304
4 1 3 1 49 298
2 80 2 812 2:92
8 2 3 2 89 2-84
7 610 6 7 2 2:58
2.2 6 2 2 6 2:49
360 3 612 248
8 2 9 2 8 3 217
3 8 1 3 813 1-98
390 3 912 1-97
6 4 5 4 6 7 177
5 410 4 5 2 1-67
5509 553 1-67
8 5 6 58 6 1-58
71 6 1 7 6 1-52

G €0S (P + Pn-1) {cos (px+ Pn-i))
1357 0788 )
3.07 bo
526 097
5.16 0040 I 0914
506 0-839
491 0-940
447 0985
431 10
429 0-985
375 0933 0965
342 0965
341 0:920
307 0891
2-89 0-809
2-89 0994 0-867
273 0-642
263 0-998 |
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the statistical weights have been taken into account.
By the mathematical device of the joint probability
distributions we have shown that the Cochran formula
[equation (6)] is inadequate for centred space groups
and for some reflexion classes in certain space groups.
A new conditional distribution function [equation (9)]
and a generalized tangent formula [equation (11)] have
been suggested: some experimental tests proved satis-
factory.

The use of equation (11) in the automatic procedures
for the phase assignment is expensive in computing
time: nevertheless equation (11) seems suitable in the
refinement stages of the phases.

APPENDIX

By the definition of normalized structure factor
(Hauptman & Karle, 1953; Bertaut, 1959)

€M)y =<y () +<n"’m)y=m,

where m is the order of the space group.
If E, is a general reflexion

7 ’ m
(o)== -
If E, is a centrosymmetric reflexion with 7'(h)=0 or
va=0, )
Cy*m)y=m or (r(h))=m.

By linearization theory we can write, in analogy with
equation (I.A2)
EMm)EE)E(h—k)) = ]Z r as(h)a,(k)
x E[h(R;+ D) +k(R,.—D)].

(AD)

(A2)

(A3)

Some interesting algebraical features of the expressions
(I.A2) and (A3) can be shown:

(1) Unlike ()EE)E(—h—K)), (C(M)EK)E(h—K)) is
in general equal to zero: in fact the condition
h(R,+I)+k(R,—I)=0 requires either a centrosymme-
tric reflexion h or a suitable arrangement of the vectors
h(R+1) and k(R,-1).

We refer for an example to the space group P2,2,2,
(some numerical values are shown in Table 1): the
symmetry operations are

100 100
R=[010]; R,=|0T0;
001 00T
700 T00
R;={010/; R,=|0 T 0[;
00T 001
o y
T1=0; T2=%;
{0 0
o ot
T:=|3|; T,=|0
1 1
.2 L2

FOR PHASE DETERMINATION. II

If h=(g,0,u) is a centrosymmetric reflexion, k=
(0,g,u), h—k=(g,g,g), we obtain from equation (A3)

EME&)E(h—k)) = —&(0)=—4. (A4)
In fact, for s=3 and r=1 the condition h(R;+I)+
k(R,—~I)=0 is satisfied: the negative sign in (A4)
derives from the a (h) value.

(2) The mean value {(£h)é(k)E(—h—k)), as we have
shown in the paper I, is in general equal to m: the
statistical features of E,, Ey, E,_y can modify this
situation, but never make {(£(h)¢&)E(—h—k)) nega-
tive.

In fact the condition h(R,—I)+(h,(R,—I)=0 is
verified only when

(a) ths:hla hZRr=h2
(6) (hy+h)R,=h +h,.
In accordance with Bertaut (1959)

¢(hCy)=<(M),

or, more explicitly,
E(hCy)=C(hRy) exp 2nihT,=¢(hR,)ag(h).

When hR,=h, as in (a) or (b), then &(hC,)=<E(h)ag(h),
and, from (AY), a,h)=1.

The values of ay(h) and a.(k) in (A3) can then be
made equal to unity, and some computational time
can thus be saved in the evaluation of

EMEK)(—h—k)).

It should be noticed that {£(h)é(k)¢(—h—K)) can
be also equal to zero in certain space groups. An
example is shown in Table 2, column 8: in fact we
obtain a contribution equal to m for r=s=1, a con-
tribution equal to —m for s=2, r=3.

(3) In spite of the differences between

(€)' &) (h—k))
0K (~h-k)),

following equalities are valid:
[y’ ()y' (K)y' (h—Kk) Y=<y (=h)y &)y’ (h—k))|
[<n’ (h)y’ )’ (h=K) )| =|<n'(=h)y' K)n'(h—=K))|, . . .
(A6)
The reason is trivial, and resides in the relations

py)=yp(-h), nh)=-n(-h).

(A5)

and
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